Given an array of unique integers, each integer is strictly greater than 1.
We make a binary tree using these integers and each number may be used for any number of times.
Each non-leaf node’s value should be equal to the product of the values of it’s children.
How many binary trees can we make? Return the answer modulo 10 ** 9 + 7.
Example 1:
Input: A = [2, 4]
Output: 3
Explanation: We can make these trees: [2], [4], [4, 2, 2]
Example 2:
Input: A = [2, 4, 5, 10]
Output: 7
Explanation: We can make these trees: [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].
Note:
1 <= A.length <= 1000.
2 <= A[i] <= 10 ^ 9.
分析:
构建一个所有父节点的值等于其子节点的值的乘积的树,问有多少种构建方法,注意数据长度小于1000,说明n^2复杂度是可行的
思路:
比如[2,5,10,20],对于20由2和10组成,10又可以由2和5组成,所以组成20的方法应该是组成2的方法数乘以组成10的方法数
1 | def numFactoredBinaryTrees(A): |