给定一个数组nums,一个目标值target,在数组找两个数满足这两个数的和为target。
返回这两个数在nums中的下标。
example:
nums = [2,7,11,15]
target = 9
return [0,1]
给定一个数组nums,一个目标值target,在数组找两个数满足这两个数的和为target。
返回这两个数在nums中的下标。
example:
nums = [2,7,11,15]
target = 9
return [0,1]
你的音乐播放器里有 N 首不同的歌,在旅途中,你的旅伴想要听 L 首歌(不一定不同,即允许歌曲重复)。请你为她按如下规则创建一个播放列表:
每首歌至少播放一次。
一首歌只有在其他 K 首歌播放完之后才能再次播放。
返回可以满足要求的播放列表的数量。由于答案可能非常大,请返回它模 10^9 + 7 的结果。
示例 1:
输入:N = 3, L = 3, K = 1
输出:6
解释:有 6 种可能的播放列表。[1, 2, 3],[1, 3, 2],[2, 1, 3],[2, 3, 1],[3, 1, 2],[3, 2, 1].
完全二叉树是每一层(除最后一层外)都是完全填充(即,结点数达到最大)的,并且所有的结点都尽可能地集中在左侧。
设计一个用完全二叉树初始化的数据结构 CBTInserter,它支持以下几种操作:
CBTInserter(TreeNode root) 使用头结点为 root 的给定树初始化该数据结构;
CBTInserter.insert(int v) 将 TreeNode 插入到存在值为 node.val = v 的树中以使其保持完全二叉树的状态,并返回插入的 TreeNode 的父结点的值;
CBTInserter.get_root() 将返回树的头结点。
给定一个由整数数组 A 表示的环形数组 C,求 C 的非空子数组的最大可能和。
在此处,环形数组意味着数组的末端将会与开头相连呈环状。(形式上,当0 <= i < A.length 时 C[i] = A[i],而当 i >= 0 时 C[i+A.length] = C[i])
此外,子数组最多只能包含固定缓冲区 A 中的每个元素一次。(形式上,对于子数组 C[i], C[i+1], …, C[j],不存在 i <= k1, k2 <= j 其中 k1 % A.length = k2 % A.length)
示例 1:
输入:[1,-2,3,-2]
输出:3
解释:从子数组 [3] 得到最大和 3
在选举中,第 i 张票是在时间为 times[i] 时投给 persons[i] 的。
现在,我们想要实现下面的查询函数: TopVotedCandidate.q(int t) 将返回在t时刻主导选举的候选人的编号。
在t时刻投出的选票也将被计入我们的查询之中。在平局的情况下,最近获得投票的候选人将会获胜。
给定一个整数数组 A,对于每个整数 A[i],我们可以选择 x = -K 或是 x = K,并将 x 加到 A[i] 中。
在此过程之后,我们得到一些数组 B。
返回 B 的最大值和 B 的最小值之间可能存在的最小差值。
在一块 N x N 的板子 board 上,从板的左下角开始,每一行交替方向,按从 1 到 N*N 的数字给方格编号。例如,对于一块 6 x 6 大小的板子,可以编号如下:
36 35 34 33 32 31
25 26 27 28 29 30
24 23 22 21 20 19
13 14 15 16 17 18
12 11 10 09 08 07
01 02 03 04 05 06
从板子的方块 1 开始(总是在最后一行、第一列)出发。
从方块 x 开始,每一次移动都按照以下规则:
Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarray of A.
Since the answer may be large, return the answer modulo 10^9 + 7.
Example 1:
Input: [3,1,2,4]
Output: 17
Explanation: Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4].
Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1. Sum is 17.
Note:
In a row of trees, the i-th tree produces fruit with type tree[i].
You start at any tree of your choice, then repeatedly perform the following steps:
Add one piece of fruit from this tree to your baskets. If you cannot, stop.
Move to the next tree to the right of the current tree. If there is no tree to the right, stop.
Note that you do not have any choice after the initial choice of starting tree: you must perform step 1, then step 2, then back to step 1, then step 2, and so on until you stop.
You have two baskets, and each basket can carry any quantity of fruit, but you want each basket to only carry one type of fruit each.
What is the total amount of fruit you can collect with this procedure?
Example 1:
Input: [1,2,1]
Output: 3
Explanation: We can collect [1,2,1].
Given an array A of non-negative integers, return an array consisting of all the even elements of A, followed by all the odd elements of A.
You may return any answer array that satisfies this condition.
Example 1:
Input: [3,1,2,4]
Output: [2,4,3,1]
The outputs [4,2,3,1], [2,4,1,3], and [4,2,1,3] would also be accepted.